40723143 cd2021

  • Home
    • Site Map
    • reveal
    • blog
  • About
  • Homework
    • 創作動機
    • 零件圖
    • 遇到問題
    • 解決方法
  • Stage1
    • W1
    • W2
    • W3
    • W4
    • W5
  • Stage2
    • W6
    • W7
    • W8
    • W9
  • Stage3
    • w10
    • w11
    • w12
    • w13
    • task1
    • w14
    • w15
      • Geometry Translation
      • Algebra Translation
  • W16
    • Test1
    • Test2
    • Test3
    • Test4
  • w17
  • W18
Geometry Translation << Previous Next >> W16

Algebra Translation

00:03
Here we have the same two link robot as we just looked at but this time we're going to
在這裡,我們有剛剛看到的相同的兩個雙聯桿件,但這次我們要
00:07
solve it using an analytical approach, that is we're going to rely much more on algebra,
使用分析方法解決它,也就是說我們將更多地依賴代數,
00:12
particular linear algebra rather than geometry. We have an expression E, which is the homogeneous
特定的線性代數而不是幾何。我們有一個表達式 E,它是齊次的
00:19
transformation which represents the pose of the robots endefector and we looked at this
代表機器人末端執行器的轉換,我們查看了這個
00:24
in the last lecture, we can write the endefector pose as a sequence of elementary homogeneous
在上一課中,我們可以將末端執行器寫為一系列基本齊次
00:31
transformations. A rotation by Q1, a translation along the X direction by A1, a rotation by
轉換。旋轉 Q1,沿 X 方向平移 A1,旋轉
00:38
Q2 and then a translation in the X direction by A2. If I expand this out, multiply all
Q2,然後由 A2 在 X 方向進行平移。如果我展開這個,乘以所有
00:45
the transformations together, I get the expression shown here; a three by three homogeneous transformation
一起轉換,我得到這裡顯示的表達式;三乘三同構變換
00:51
matrix representing the pose of the robot's endefector.
表示桿件尾端的矩陣。
00:56
Now for this particular two link robot, we are only interested in the position of its
現在對於這個特殊的雙連桿件,我們只對它的位置感興趣
01:00
endefector, it's X and Y co-ordinate and they are these two elements within the homogeneous
末端執行器,它是 X 和 Y 坐標,它們是同質中的這兩個元素
01:06
transformation matrix, so I'm going to copy those out. So here again is our expression
轉換矩陣,所以我要把它們複製出來。所以這裡又是我們的表達
01:11
for X and Y and what we're going to do is a fairly common trick, we're going to square
對於 X 和 Y 我們要做的是一個相當常見的技巧,我們要平方
01:16
and add these two equations and I get a relationship that looks like this. Now I can solve for
並添加這兩個方程,我得到一個看起來像這樣的關係。現在我可以解決
01:23
the joint angle Q2 in terms of the endefector pose X and Y and the robot's constants A1 and A2.
關節角度 Q2 根據 endefector 姿勢 X 和 Y 以及機器人的常數 A1 和 A2。
01:31
Now what I'm going to do is apply the sum of angles identity. I'm going to expand these
現在我要做的是應用角度恆等式。我要擴展這些
01:36
terms, sine of Q1 plus Q2 or cos of Q1 plus Q2 and to make life a little bit easier, I'm
條款,Q1 的正弦加 Q2 或 Q1 的 cos 加 Q2 並讓生活更輕鬆一點,我是
01:43
going to make some substations, so where ever I had cos Q2, I'm going to write C2 and where
打算做一些變化,所以我在哪裡有 cos Q2,我要寫 C2 和哪裡
01:48
ever I had sine Q2, I’m going to write S2. It's a fairly common shorthand when people
曾經我有正弦 Q2,我要寫 S2。這是一個相當常見的速記,當人們
01:54
are looking at robot kinematic equations. And here are the equations after making those
正在研究機器人運動學方程。這是製作後的方程式
01:58
substitutions. Looking at these two equations, I can see that they fall into a very well
替代品。看這兩個方程,我可以看出它們落入了一個很好的
02:04
known form and for that form there is a very well known solution. So I'm going to consider
已知形式,對於該形式,有一個眾所周知的解決方案。所以我要考慮
02:10
just one of the equations, the equation for Y and using our well known identity and it's
只是其中一個方程,Y 的方程並使用我們眾所周知的身份,它是
02:15
solution, I can determine the values for the variables little a, little b and little c
解決方案,我可以確定變量小 a、小 b 和小 c 的值
02:21
and once I've determined those, then I can just write down the solution for Q1, which
一旦我確定了這些,那麼我就可以寫下 Q1 的解決方案,即
02:27
is the equivalent of theta in this particular case.
在這種特殊情況下相當於特殊案例。
02:31
Here again is our expression for Q1, copied over from the previous slide and we may remember
這又是我們對 Q1 的表達,從上一張幻燈片複製過來,我們可能還記得
02:36
from earlier in our workings that we determined this particular relationship; X squared plus
在我們工作的早期,我們確定了這種特殊的關係; X平方加
02:41
Y squared is equal to this particular complex expression. So I can substitute that in and
Y 平方等於這個特定的複數表達式。所以我可以用和代替它
02:47
do some simplification and I end up with this slightly less complex expression for Q1. And
做一些簡化,我最終得到了 Q1 的這個稍微不那麼複雜的表達式。和
02:53
it is the same expression that I got following the geometric approach in the previous section.

它與我在上一節中遵循幾何方法得到的表達式相同。

 


Geometry Translation << Previous Next >> W16

Copyright © All rights reserved | This template is made with by Colorlib